

Presented by:

Alex Kisin (MEI/NASA GSFC) <u>alexander.b.kisin@nasa.gov</u>

Glenn Rakow (NASA GSFC) glenn.p.rakow@nasa.gov

SpaceWire International Conference N

SpW performance degrading factors:

- Evolutional:
 - Higher speeds
 - Longer distances
 - Lower Bit Error Rate (BER) levels requirements
- Physical media losses:
 - Smaller wire cross-section (to save weight)
 - Cable/connector parameters deviations and imperfections
- Interface hardware:
 - Parameters variations from different IC manufacturers
- External media susceptibility:
 - Common Mode Voltage (CMV) noise
 - Electro Magnetic Interference (EMI)

Needed: verification tools to assess SpW margins!!

Parts to be tested:

- FPGA / ASIC
 - Digital simulation
 - Standard design procedure
- Transmitter
 - No testing except maximum drive current
 - · Fixed and specified by manufacturer
- Receiver
 - Most likely to fail (induce errors) due to various operational conditions
 - Marginal operation conditions needs to be established

Required: define marginal receiver operation conditions

Parameters to be simulated:

- Skew/Jitter:
 - Between Data and Strobe
 - Within each D/S pair
- Received signal span:
 - Guaranteed minimum Peak-to-Peak (P2P) voltage span at receiver end
- Common mode voltage:
 - Received signal bias

Goal: simulate marginal receiver "eye" at desired BER or FER (Frame Error Rate)

Parameter simulation diagrams:

LVDS <u>bias</u>

"Eye" <u>span</u>

Major SpW physical layer parameters can be simulated

SpaceWire International Conference

Suggested Tester types:

- **Coarse** (no effects on protocol or communication speed):
 - Pass through mode:
 - Inserted between known good SpW transmitter (Auxiliary Tester) and Device Under Test (DUT) receiver for full duplex peer-to-peer SpW operation
 - Loop back mode:
 - Connected to DUT as Slave and loops marginalized signal back to DUT
 - Error detection:
 - DUT SpaceWire dropouts monitoring
- Precise (simulates protocol and communication speeds):
 - Master mode:
 - Connected to DUT and works as Master
 - Emulates SpW protocol with simultaneous signal marginalization
 - Error detection:
 - Works as simple BER tester, assuming that DUT can report errors back to it
 - Dropouts monitoring as in Coarse tester

Proposed: create 1 Coarse tester by Q4 2008; start on Precise tester in Q1 2009

Coarse tester diagram (Pass mode):

Full duplex communication between Master and DUT

SpaceWire International Conference

Coarse tester diagram (Loop mode):

Tester is used as "bend pipe" for DUT

Coarse tester parameters for both Pass and Loop modes:

- D and S Skew injection:
 - Simulation range
 - 0 to ±30 nS (speed dependent) from "0" nominal with D leading and S trailing, or vs. vs.; max of 61 steps
 - Internal differential pair skew injection:
 - None
 - Step resolution
 - 1 nS with ± 0.5 nS accuracy
- Span injection:
 - Simulation range
 - 180-720 mV peak-to-peak at 100 Ohm termination
 - Step resolution
 - 20 mV with ± 10 mV accuracy in 28 steps
- Bias injection:
 - Simulation range
 - ± 1.2 V from +1.2 V LVDS nominal
 - Step resolution
 - 200 mV with ± 10 mV accuracy in 13 steps
- Other parameters:
 - Operating speed
 - 10 to 200 Mbps (with potential to 310 Mbps) in 20 (31) steps of 10 Mbps each
 - Number of stored test profiles
 - up to 8
 - Protocol dropouts detection
 - Up to 99999 over 99999 seconds (27+ hours)
 - Pin 3 (Transmit Ground) short to chassis detection and warning
 - Dimensions (DxWxH):
 - 160mm x 160mm x 86mm
 - Optional communications port
 - Isolated USB 2.0

Most LVDS and SpW parameters are being covered

```
SpaceWire International Conference
```


Coarse tester preliminary front panel appearance:

Stand alone portable unit

SpaceWire International Conference Nara, Japan

Coarse tester preliminary back panel appearance:

Optional USB port control

Coarse tester parameters control:

- Horizontal encoder wheel:
 - Selects between Profile, Mbps, Skew, Span, Bias fields
- Vertical encoder wheel:
 - Selects between available values assigned to the above fields
- Scan button:
 - *Momentary press:*
 - Toggle Scan option for each individual field (Skew, Span, Bias)
 - 1 sec press:
 - Toggle Scan option for all 3 fields at a time regardless of currently selected field
- Drop button:
 - *Momentary press:*
 - Start / Stop Drops counter and Timer
 - 1 sec press:
 - Reset Drops counter and Timer
- Mode button:
 - Switches between Loop and Pass modes
- USB port:
 - Provides isolated ground communications with host computer
 - Transmission
 - Immediate report on any wheels / buttons changes
 - Immediate report on any changes of Drop counter with 1 ms quantization
 - Reception
 - New setup data and functions

Simple interface

SpaceWire International Conference

Nara, Japan

November 4-6, 2008

Precise tester diagram:

Tester will provide more comprehensive and automated DUT simulation

Precise tester preliminary parameters:

• D and S Skew injection:

- Simulation range
 - ±50 nS (speed dependent) from nominal
- Internal differential pair skew injection:
 - ±1 nS
- Step resolution
 - 0.2 nS ± 0.05 nS

Span injection:

- Simulation range
 - 180–720 mV peak-to-peak at 100 Ohm termination
- Step resolution
 - 20 mV ± 10 mV

Bias injection:

- Simulation range
 - ± 1.2 V from +1.2 V LVDS nominal
- Step resolution
 - 100 mV ± 10mV

• Other parameters:

- Maximum operating speed
 - 400 Mbps (TBR)
- Number of stored test profiles
 - No limitations

Major requirement: DUT suppose to have a way to report errors back to tester

SpaceWire International Conference

Precise tester error reporting locations diagram:

DUT might provide several locations for error reporting readbacks

Error reporting locations comparison:

- Location #1 (on LVDS level such as in Aeroflex's PHY01 chip):
 - Advantages
 - Very simple implementation
 - Disadvantages
 - · Span and bias are corrected by LVDS receiver, skew is not corrected and is looped back exactly the same
 - BER is very poor and very imprecise

• Location #2 (after SpW decoder and message processor with <u>minimum</u> core modifications):

- Advantages
 - Simple implementation (just a loopback connection)
 - No special error registers
- Disadvantages
 - BER accountability is poor: possibility that only TX dropouts could be counted
- Location #2 (after SpW decoder and message processor with <u>medium</u> core modifications):
 - Advantages
 - More complex implementation (loopback connection and protocol error registers to be reported on top of looped data)
 - Excellent BER accountability
 - Disadvantages
 - Special codes in protocol: trying to differentiate error registers data in looped back data stream
 - High speed TX transmission: may induce more noise in RX data
- Location #3 (after a special built-in error processor):
 - Advantages
 - Excellent BER accountability
 - Possible low speed TX rate: only received errors are transmitted back
 - Possibility of implementation of standard BER PRN sequences
 - Disadvantages
 - New built-in function in SpW core

Different error reporting locations will yield different BER validity results

SpaceWire International Conference

Suggested requirements to DUT for better testing:

Built-in received errors counter:

- General received error counter
- Optional differentiation of error types

• Communication with DUT:

- High speed receive rate from Tester to DUT
- Preferable: fixed 10 Mbps error count transmit rate from DUT to Tester
- Less preferable: injection of error results in to back data stream

• Error testing protocol:

- Preferable: standard PRBS (PRN) from 2⁷ -1 to 2¹⁵ -1 (only 1 is required)
- Less preferable: standard SpW with new error codes
- Error display:
 - "Coarse" tester: counting SpW TX dropouts so it can be converted to BER
 - "Precise" tester: standard BER format fashion on remote test computer

Added complexity enhances timing simulation and BER measurements